JEDNOSTKA NAUKOWA KATEGORII A+

Toeplitz operators on Hardy spaces over $\operatorname{SL}(2,{\bf R})$: irreducibility and representations

Tom 55 / 2002

Alexander Alldridge, Harald Upmeier Banach Center Publications 55 (2002), 173-209 MSC: Primary 47B35, 22D25; Secondary 22E46, 32A25. DOI: 10.4064/bc55-0-9

Streszczenie

On the non-abelian, non-compact simple rank 1 Lie group $G=\operatorname{SL}(2,{\bf R})$, we consider Hardy spaces ${\bf H}^2(G^{\bf C}_{\pm})$ defined by ${\bf L}^2$-boundary values of holomorphic functions on the complex subsemigroups $G^{\bf C}_{\pm}$ of $G^{\bf C}=\operatorname{SL}(2,{\bf C})$. These Hardy spaces are associated to the two parts of the discrete series of $G$, and give rise to equivariant projections $E_{\pm}$ and corresponding Toeplitz operators ${\rm T}_\pm (f)$, $f\in\mathcal C^0(G)$. We show that a stratification of boundary faces for $G^{\bf C}_{\pm}$ can be given, and, by a geometric construction, associate to these faces representations of the C$^*$-algebra generated by the Toeplitz operators for the respective domain, thus achieving a step $2$ composition series for this C$^*$-algebra.

Autorzy

  • Alexander AlldridgeDepartment of Mathematics and Computer Science
    University of Marburg
    Hans-Meerwein-Straße
    35032 Marburg, Germany
    e-mail
  • Harald UpmeierDepartment of Mathematics and Computer Science
    University of Marburg
    Hans-Meerwein-Straße
    35032 Marburg, Germany
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek