An operator characterization of $L^p$-spaces in a class of Orlicz spaces
Tom 79 / 2008
Banach Center Publications 79 (2008), 53-55
MSC: Primary 46E30; Secondary 47B37.
DOI: 10.4064/bc79-0-3
Streszczenie
We consider an embedding of the group of invertible transformations of $[0,1]$ into the algebra of bounded linear operators on an Orlicz space. We show that if this embedding preserves the group action then the Orlicz space is an $L^p$-space for some $1\le p<\infty$.