JEDNOSTKA NAUKOWA KATEGORII A+

Twisted Alexander polynomials, symplectic 4-manifolds and surfaces of minimal complexity

Tom 85 / 2009

Stefan Friedl, Stefano Vidussi Banach Center Publications 85 (2009), 43-57 MSC: 57R17, 57M27. DOI: 10.4064/bc85-0-3

Streszczenie

Let $M$ be a $4$-manifold which admits a free circle action. We use twisted Alexander polynomials to study the existence of symplectic structures and the minimal complexity of surfaces in $M$. The results on the existence of symplectic structures summarize previous results of the authors in \cite{FV08a,FV08,FV07}. The results on surfaces of minimal complexity are new.

Autorzy

  • Stefan FriedlUniversité du Québec à Montréal
    Montréal, Québec, Canada
    and
    University of Warwick
    Coventry, UK
    e-mail
  • Stefano VidussiDepartment of Mathematics
    University of California
    Riverside, CA 92521, USA
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek