Processing math: 0%

Wykorzystujemy pliki cookies aby ułatwić Ci korzystanie ze strony oraz w celach analityczno-statystycznych.

JEDNOSTKA NAUKOWA KATEGORII A+

Invariant measure for some differential operators and unitarizing measure for the representation of a Lie group. Examples in finite dimension

Tom 96 / 2011

Hélène Airault, Habib Ouerdiane Banach Center Publications 96 (2011), 9-34 MSC: Primary 58J65; Secondary 60J60, 60H07. DOI: 10.4064/bc96-0-1

Streszczenie

Consider a Lie group with a unitary representation into a space of holomorphic functions defined on a domain of \mathbb{C} and in L^2(\mu), the measure \mu being the unitarizing measure of the representation. On finite-dimensional examples, we show that this unitarizing measure is also the invariant measure for some differential operators on {\cal D}. We calculate these operators and we develop the concepts of unitarizing measure and invariant measure for an OU operator (differential operator associated to the representation) in the following elementary cases:

A) The commutative groups (\mathbb{R}, +) and (\mathbb{R}^\ast=\mathbb{R}-{0}, \times).

B) The multiplicative group M of 2\times 2 complex invertible matrices and some subgroups of M.

C) The three-dimensional Heisenberg group.

Autorzy

  • Hélène AiraultUniversité de Picardie Jules Verne, INSSET
    48, rue Raspail, 02100 Saint-Quentin (Aisne)
    UMR6140-CNRS, 33, rue Saint-Leu, 80039 Amiens, France
    e-mail
  • Habib OuerdianeDepartment of Mathematics, Faculty of Science of Tunis
    University of Tunis El Manar, Campus Universitaire, 1060, Tunis, Tunisia
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek