On R. Chapman's “evil determinant”: case
Tom 159 / 2013
Acta Arithmetica 159 (2013), 331-344
MSC: Primary 11C20; Secondary 11R29, 15A15, 15B05.
DOI: 10.4064/aa159-4-3
Streszczenie
For p\equiv 1\ ({\rm mod}\,4), we prove the formula (conjectured by R. Chapman) for the determinant of the \frac {p+1}{2}\times \frac {p+1}{2} matrix C=(C_{ij}) with C_{ij}=\genfrac {(}{)}{}{1}{j-i}{p}.