Processing math: 0%

Wykorzystujemy pliki cookies aby ułatwić Ci korzystanie ze strony oraz w celach analityczno-statystycznych.

JEDNOSTKA NAUKOWA KATEGORII A+

A localized uniformly Jarník set in continued fractions

Tom 167 / 2015

Yuanhong Chen, Yu Sun, Xiaojun Zhao Acta Arithmetica 167 (2015), 267-280 MSC: Primary 11K55; Secondary 28A80. DOI: 10.4064/aa167-3-5

Streszczenie

For any , let [a_1(x), a_2(x),\dots] be its continued fraction expansion and \{q_n(x)\}_{n\ge 1} be the sequence of the denominators of its convergents. For any \tau>0, we call U(\tau)=\bigg\{x \in [0,1): \bigg|x-\frac{p_n(x)}{q_n(x)}\bigg|< \bigg(\frac{1}{q_n(x)}\bigg)^{{\tau+2}} \ {\text{for}}\ n\in \mathbb{N} \ {\text{ultimately}} \big\} a uniformly Jarník set, a collection of points which can be uniformly well approximated by its convergents eventually. In this paper, instead of a constant function of \tau, we consider a localized version of the above set, namely U_{\text{loc}}(\tau)=\bigg\{x \in [0,1): \bigg|x-\frac{p_n(x)}{q_n(x)}\bigg|< \bigg(\frac{1}{q_n(x)}\bigg)^{{\tau(x)+2}} \ {\text{for}}\ n\in \mathbb N \ {\text{ultimately}}\biggr\}, where \tau:[0,1]\to \mathbb R^+ is a continuous function. We call U_{\text{loc}}(\tau) a localized uniformly Jarník set, and determine its Hausdorff dimension.

Autorzy

  • Yuanhong ChenSchool of Mathematics and Statistics
    Huazhong University of Science and Technology
    430074 Wuhan, Hubei, P.R. China
    e-mail
  • Yu SunFaculty of Science
    Jiangsu University
    212013 Zhenjiang, Jiangsu, P.R. China
    e-mail
  • Xiaojun ZhaoSchool of Economics
    Peking University
    100871 Beijing, P.R. China
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek