JEDNOSTKA NAUKOWA KATEGORII A+

A note on ternary purely exponential diophantine equations

Tom 171 / 2015

Yongzhong Hu, Maohua Le Acta Arithmetica 171 (2015), 173-182 MSC: Primary 11D61. DOI: 10.4064/aa171-2-4

Streszczenie

Let $a,b,c$ be fixed coprime positive integers with $\min\{a,b,c\}>1$, and let $m=\max \{a,b,c\}$. Using the Gel'fond–Baker method, we prove that all positive integer solutions $(x,y,z)$ of the equation $a^x+b^y=c^z$ satisfy $\max \{x,y,z\}<155000(\log m)^3$. Moreover, using that result, we prove that if $a,b,c$ satisfy certain divisibility conditions and $m$ is large enough, then the equation has at most one solution $(x,y,z)$ with $\min\{x,y,z\}>1$.

Autorzy

  • Yongzhong HuDepartment of Mathematics
    Foshan University
    528000 Foshan, Guangdong, P.R. China
    e-mail
  • Maohua LeInstitute of Mathematics
    Lingnan Normal University
    524048 Zhanjiang, Guangdong, P.R. China
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek