Processing math: 0%

Wykorzystujemy pliki cookies aby ułatwić Ci korzystanie ze strony oraz w celach analityczno-statystycznych.

JEDNOSTKA NAUKOWA KATEGORII A+

The Davenport constant of a box

Tom 171 / 2015

Alain Plagne, Salvatore Tringali Acta Arithmetica 171 (2015), 197-219 MSC: Primary 11B75; Secondary 11B30, 11P70. DOI: 10.4064/aa171-3-1

Streszczenie

Given an additively written abelian group and a set X\subseteq G, we let \mathscr{B}(X) denote the monoid of zero-sum sequences over X and \mathsf{D}(X) the Davenport constant of \mathscr{B}(X), namely the supremum of the positive integers n for which there exists a sequence x_1 \cdots x_n in \mathscr{B}(X) such that \sum_{i \in I} x_i \ne 0 for each non-empty proper subset I of \{1, \ldots, n\}. In this paper, we mainly investigate the case when G is a power of \mathbb{Z} and X is a box (i.e., a product of intervals of G). Some mixed sets (e.g., the product of a group by a box) are studied too, and some inverse results are obtained.

Autorzy

  • Alain PlagneCentre de math\'ematiques Laurent Schwartz
    \'Ecole polytechnique
    91128 Palaiseau Cedex, France
    e-mail
  • Salvatore TringaliScience Program
    Texas A\&M University at Qatar
    Education City
    PO Box 23874, Doha, Qatar
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek