Processing math: 0%

Wykorzystujemy pliki cookies aby ułatwić Ci korzystanie ze strony oraz w celach analityczno-statystycznych.

JEDNOSTKA NAUKOWA KATEGORII A+

Cohen–Kuznetsov liftings of quasimodular forms

Tom 171 / 2015

Min Ho Lee Acta Arithmetica 171 (2015), 241-256 MSC: 11F11, 11F50. DOI: 10.4064/aa171-3-3

Streszczenie

Jacobi-like forms for a discrete subgroup of {\rm SL}(2,\mathbb R) are formal power series which generalize Jacobi forms, and they correspond to certain sequences of modular forms for \varGamma . Given a modular form f, a Jacobi-like form can be constructed by using constant multiples of derivatives of f as coefficients, which is known as the Cohen–Kuznetsov lifting of f. We extend Cohen–Kuznetsov liftings to quasimodular forms by determining an explicit formula for a Jacobi-like form associated to a quasimodular form.

Autorzy

  • Min Ho LeeDepartment of Mathematics
    University of Northern Iowa
    Cedar Falls, IA 50614, U.S.A.
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek