JEDNOSTKA NAUKOWA KATEGORII A+

Shimura lifting on weak Maass forms

Tom 173 / 2016

Youngju Choie, Subong Lim Acta Arithmetica 173 (2016), 1-18 MSC: Primary 11F27. DOI: 10.4064/aa7916-12-2015 Opublikowany online: 25 March 2016

Streszczenie

There is a Shimura lifting which sends cusp forms of a half-integral weight to holomorphic modular forms of an even integral weight. Niwa and Cipra studied this lifting using the theta series attached to an indefinite quadratic form; later, Borcherds and Bruinier extended this lifting to weakly holomorphic modular forms and harmonic weak Maass forms of weight ${1/2}$, respectively. We apply Niwa’s theta kernel to weak Maass forms by using a regularized integral. We show that the lifted function satisfies modular transformation properties and is an eigenfunction of the Laplace operator. In particular, this lifting preserves the property of being harmonic. Furthermore, we determine the location of singularities of the lifted function and describe its singularity type.

Autorzy

  • Youngju ChoieDepartment of Mathematics and PMI
    Pohang University of Science and Technology
    Pohang, 790-784
    Republic of Korea
    e-mail
  • Subong LimDepartment of Mathematics Education
    Sungkyunkwan University
    25-2, Sungkyunkwan-ro
    Jongno-gu, Seoul, 03063
    Republic of Korea
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek