Processing math: 0%

Wykorzystujemy pliki cookies aby ułatwić Ci korzystanie ze strony oraz w celach analityczno-statystycznych.

JEDNOSTKA NAUKOWA KATEGORII A+

A higher-dimensional Siegel–Walfisz theorem

Tom 179 / 2017

Pierre-Yves Bienvenu Acta Arithmetica 179 (2017), 79-100 MSC: Primary 11B30. DOI: 10.4064/aa8600-10-2016 Opublikowany online: 28 April 2017

Streszczenie

The Green–Tao–Ziegler theorem provides asymptotics for the number of prime tuples of the form when n ranges over the integer vectors of a convex body K\subset [-N,N]^d and \varPsi=(\psi_1,\ldots,\psi_t) is a system of affine-linear forms whose linear coefficients remain bounded (in terms of N). In the t=1 case, the Siegel–Walfisz theorem shows that the asymptotic still holds when the coefficients vary like a power of \log N. We prove a higher-dimensional (i.e. t \gt 1) version of this fact.

We provide natural examples where our theorem goes beyond the one of Green and Tao, such as the count of arithmetic progressions of step \lfloor \log N\rfloor times a prime in the primes up to N. We also apply our theorem to the determination of asymptotics for the number of linear patterns in a dense subset of the primes, namely the primes p for which p-1 is squarefree. To the best of our knowledge, this is the first such result in dense subsets of primes save for congruence classes.

Autorzy

  • Pierre-Yves BienvenuSchool of Mathematics
    University of Bristol
    Bristol BS8 1TW, United Kingdom
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek