JEDNOSTKA NAUKOWA KATEGORII A+

On the representation of friable integers by linear forms

Tom 181 / 2017

Armand Lachand Acta Arithmetica 181 (2017), 97-109 MSC: Primary 11N25; Secondary 11N37. DOI: 10.4064/aa8153-9-2017 Opublikowany online: 6 November 2017

Streszczenie

Let $P^+(n)$ denote the largest prime factor of the integer $n$. Using the nilpotent Hardy–Littlewood method developed by Green and Tao, we give an asymptotic formula for $$ \varPsi_{F_1\cdots F_t}(\mathcal{K}\cap[-N,N]^d,N^{1/u}) := \#\{\boldsymbol{n}\in \mathcal{K}\cap[-N,N]^d:\vphantom{P^+(F_1(\boldsymbol{n})\cdots F_t(\boldsymbol{n}))\leq N^{1/u}} P^+(F_1(\boldsymbol{n})\cdots F_t(\boldsymbol{n}))\leq N^{1/u}\} $$ where $(F_1,\ldots,F_t)$ is a system of affine-linear forms on $\mathbb{Z}[X_1,\ldots,X_d]$ no two of which are affinely related, and $\mathcal{K}$ is a convex body. This improves upon Balog, Blomer, Dartyge and Tenenbaum’s work [Comment. Math. Helv. 87 (2012)] in the case of products of linear forms.

Autorzy

  • Armand LachandInstitut Élie Cartan
    Université de Lorraine
    B.P. 70239
    54506 Vandœuvre-lès-Nancy Cedex, France
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek