JEDNOSTKA NAUKOWA KATEGORII A+

New recurrence relations and matrix equations for arithmetic functions generated by Lambert series

Tom 181 / 2017

Maxie D. Schmidt Acta Arithmetica 181 (2017), 355-367 MSC: 11A25, 05A15, 11N64; Secondary 11Y70, 05A30. DOI: 10.4064/aa170217-4-8 Opublikowany online: 8 December 2017

Streszczenie

We consider relations between the pairs of sequences $(f, g_f)$ generated by the Lambert series expansions $L_f(q) = \sum_{n \geq 1} f(n) q^n / (1-q^n)$ in $q$ where $g_f(m)$ is defined to be the coefficient of $q^m$ in $L_f(q)$. In particular, we prove new recurrence relations and matrix equations defining these sequences for all $n \in \mathbb{Z}^{+}$. The key ingredient to the proofs is Euler’s pentagonal number theorem. Our new results include new exact formulas for and applications to the Euler phi function $\phi(n)$, the Möbius function $\mu(n)$, the sum-of-divisors functions $\sigma_1(n)$ and $\sigma_{\alpha}(n)$ for $\alpha \geq 0$ and Liouville’s lambda function $\lambda(n)$.

Autorzy

  • Maxie D. SchmidtSchool of Mathematics
    Georgia Institute of Technology
    Atlanta, GA 30332, U.S.A.
    e-mail
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek