JEDNOSTKA NAUKOWA KATEGORII A+

Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

An average asymptotic for the number of extremal primes of elliptic curves

Tom 183 / 2018

Luke Giberson, Kevin James Acta Arithmetica 183 (2018), 145-165 MSC: Primary 11G05; Secondary 11F30. DOI: 10.4064/aa170406-30-1 Opublikowany online: 30 March 2018

Streszczenie

Let $E/\mathbb Q$ be an elliptic curve, and let $p$ be a rational prime of good reduction. Let $a_p(E)$ denote the trace of the Frobenius endomorphism of $E$ at $p$. We say $p$ is a champion prime of $E$ if $\newcommand{\mgi}[1]{[|#1|]}a_p(E)=- \mgi{2\sqrt{p}}$, which occurs precisely when the group of $\mathbb F_p$-rational points is as large as possible in accordance with the Hasse bound. In a similar vein, we say $p$ is a trailing prime of $E$ if $\newcommand{\mgi}[1]{[|#1|]}a_p(E) = +\mgi{2\sqrt{p}}$, which occurs precisely when the group of $\mathbb F_p$-rational points is as small as possible in accordance with the Hasse bound. Together, we say that these primes constitute the extremal primes of $E$. We prove that on average, the number of champion primes of elliptic curves that are less than $X$ is asymptotically equal to $\frac{8}{3\pi} \cdot X^{1/4} /\! \log{X}$. As an immediate corollary, we also gain asymptotics on the average number of trailing primes less than $X$ and the average number of extremal primes less than $X$.

Autorzy

  • Luke GibersonDepartment of Mathematical Sciences
    Clemson University
    O-110 Martin Hall, Box 340975
    Clemson, SC 29634, U.S.A.
    e-mail
  • Kevin JamesDepartment of Mathematical Sciences
    Clemson University
    O-110 Martin Hall, Box 340975
    Clemson, SC 29634, U.S.A.
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek