JEDNOSTKA NAUKOWA KATEGORII A+

Computing Galois groups of certain families of polynomials

Tom 185 / 2018

Khosro Monsef Shokri, Jafar Shaffaf, Reza Taleb Acta Arithmetica 185 (2018), 357-365 MSC: Primary 11R32; Secondary 11R29, 11S15. DOI: 10.4064/aa171014-26-2 Opublikowany online: 8 October 2018

Streszczenie

There are several results on computing the Galois groups of different families of trinomials with integer coefficients. However, adding even one more term to a trinomial makes this computation very complicated due to some problems including the complexity of finding a formula for the discriminant. We show that the Galois group of certain irreducible quadrinomials of the form $f(x)=x^{n}+ax^{n-1}+bx^{n-2}+c\in \mathbb{Z}[x]$ is the full symmetric group $S_n$, and furthermore we generalize the results to a certain family of polynomials with an arbitrary number of terms.

Autorzy

  • Khosro Monsef ShokriDepartment of Mathematical Sciences
    Shahid Beheshti University
    P.O. Box 19839-63113, Tehran, Iran
    e-mail
  • Jafar ShaffafDepartment of Mathematical Sciences
    Shahid Beheshti University
    P.O. Box 19839-63113, Tehran, Iran
    e-mail
  • Reza TalebDepartment of Mathematical Sciences
    Shahid Beheshti University
    P.O. Box 19839-63113, Tehran, Iran
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek