On the values of $\varGamma ^*(k,p)$ and $\varGamma ^*(k)$
Hemar Godinho, Michael P. Knapp, Paulo H. A. Rodrigues, Daiane Veras
Acta Arithmetica 191 (2019), 67-80
MSC: Primary 11D72; Secondary 11D79, 11D88.
DOI: 10.4064/aa180613-4-1
Opublikowany online: 29 July 2019
Streszczenie
For $k\in\mathbb{N}$ and $p$ a prime number, define $\varGamma^*(k,p)$ to be the smallest $n \in \mathbb{N}$ such that every diagonal form $a_{1}x_{1}^k + \cdots + a_{s}x_{s}^{k}$ with integer coefficients has a nontrivial zero over $\mathbb{Q}_p$ whenever $s\geq n$. Define also $$\varGamma^{*}(k) = \displaystyle \max _{p \,{\rm prime}} \varGamma^*(k,p).$$
We prove an upper bound for $\varGamma^*(k,p)$ and show that it is equal to $\varGamma^*(k,p)$ whenever $p-1$ divides $k$. We also find the exact value of $\varGamma^*(54)$.
Autorzy
- Hemar GodinhoDepartamento de Matemática
Universidade de Brasília
Brasília, DF 70910-900, Brazil
e-mail
- Michael P. KnappDepartment of Mathematics and Statistics
Loyola University Maryland
Baltimore, MD 21210-2699, U.S.A.
e-mail
- Paulo H. A. RodriguesInstituto de Matemática e Estatística
Universidade Federal de Goiás
Goiânia, GO 74690-900, Brazil
e-mail
- Daiane VerasInstituto federal de Goiás
Avenida Saia Velha, Km 6, BR-040, s/n
Parque Esplanada V
Valparaíso de Goiás, GO 72876-601, Brazil
e-mail