Twists of hyperelliptic curves by integers in progressions modulo
Tom 192 / 2020
Acta Arithmetica 192 (2020), 63-71
MSC: Primary 11N32; Secondary 11N36, 11G30.
DOI: 10.4064/aa180702-20-3
Opublikowany online: 7 October 2019
Streszczenie
Let f(x) be a nonconstant polynomial with integer coefficients and nonzero discriminant. We study the distribution modulo primes of the set of squarefree integers d such that the curve dy^2=f(x) has a nontrivial rational or integral point.