JEDNOSTKA NAUKOWA KATEGORII A+

Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

On generalizations of the Titchmarsh divisor problem

Tom 193 / 2020

Akshaa Vatwani, Peng-Jie Wong Acta Arithmetica 193 (2020), 321-337 MSC: Primary 11N37; Secondary 11N25. DOI: 10.4064/aa180324-23-7 Opublikowany online: 14 February 2020

Streszczenie

Let $\mathcal F = \{\mathcal F_m : m \in \mathbb N\}$ be a family of Galois extensions of $\mathbb Q$, and $\mathcal D =\{ \mathcal D_m \subseteq \operatorname{Gal} (\mathcal F_m/\mathbb Q): m \in \mathbb N \}$ be a family of conjugacy classes of the corresponding Galois groups. Letting $\mathcal P_m = \mathcal P(\mathcal F_m, \mathcal D_m) $ be the corresponding Chebotarev sets of primes, we build upon a generalization of the Titchmarsh divisor problem formulated by Akbary and Ghioca (2012). We consider the sum $\sum _{p \le x} \tau _{\mathcal F, \mathcal D}^{K,C}(p)$, where $ \tau _{\mathcal F, \mathcal D}^{K,C}(p)$ not only counts all occurrences of $p$ in the family $\{\mathcal P_m\}$ of Chebotarev sets, but also imposes the condition that $p$ belongs to a certain fixed Chebotarev set $\mathcal P(K,C)$.

We obtain results for this generalization in particular cases, namely when $\mathcal {F}$ is a family of cyclotomic extensions of $\mathbb Q$ and the Chebotarev set $\mathcal P$ has level of distribution $1/2$. As a special case, we obtain a version of the Titchmarsh divisor problem in arithmetic progressions, which can be viewed as a variation of a result of Felix (2012). Finally, we generalize a result due to Fiorilli (2012) to obtain a Bombieri–Vinogradov type estimate for a modified Titchmarsh divisor problem involving a truncated divisor function.

Autorzy

  • Akshaa VatwaniDepartment of Mathematics
    Indian Institute of Technology Gandhinagar
    Palaj, Gandhinagar, Gujarat 382355, India
    e-mail
  • Peng-Jie WongDepartment of Mathematics and Computer Science
    University of Lethbridge
    Lethbridge, Alberta T1K 3M4, Canada
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek