JEDNOSTKA NAUKOWA KATEGORII A+

Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

The reciprocal sum of divisors of Mersenne numbers

Tom 197 / 2021

Zebediah Engberg, Paul Pollack Acta Arithmetica 197 (2021), 421-440 MSC: Primary 11N37; Secondary 11A25, 11B37. DOI: 10.4064/aa200602-11-9 Opublikowany online: 1 December 2020

Streszczenie

We investigate various questions concerning the reciprocal sum of divisors, or prime divisors, of the Mersenne numbers $2^n-1$. Conditionally on the Elliott–Halberstam Conjecture and the Generalized Riemann Hypothesis, we determine $\max _{n\le x} \sum _{p \mid 2^n-1} 1/p$ to within $o(1)$ and $\max _{n\le x} \sum _{d\mid 2^n-1}1/d$ to within a factor of $1+o(1)$, as $x\to \infty $. This refines, conditionally, earlier estimates of Erdős and Erdős–Kiss–Pomerance. Conditionally (only) on GRH, we also determine $\sum 1/d$ to within a factor of $1+o(1)$ where $d$ runs over all numbers dividing $2^n-1$ for some $n\le x$. This conditionally confirms a conjecture of Pomerance and answers a question of Murty–Rosen–Silverman. Finally, we show that both $\sum _{p\mid 2^n-1} 1/p$ and $\sum _{d\mid 2^n-1}1/d$ admit continuous distribution functions in the sense of probabilistic number theory.

Autorzy

  • Zebediah EngbergWasatch Academy
    Mt. Pleasant, UT 84647, U.S.A.
    e-mail
  • Paul PollackDepartment of Mathematics
    University of Georgia
    Athens, GA 30602, U.S.A.
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek