JEDNOSTKA NAUKOWA KATEGORII A+

Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

Asymptotic bounds for factorizations into distinct parts

Tom 201 / 2021

Noah Lebowitz-Lockard Acta Arithmetica 201 (2021), 371-389 MSC: Primary 11N37; Secondary 11N56. DOI: 10.4064/aa200715-15-10 Opublikowany online: 24 November 2021

Streszczenie

Let $f(n)$ be the number of unordered factorizations of $n$ into parts greater than $1$ and let $F(n)$ be the number of such factorizations into distinct parts. For arbitrary $n$, we find new upper and lower bounds for $F(n)$ and show that these bounds are close together. Using a similar technique, we also bound from above the number of ordered factorizations into distinct parts greater than $1$. We also find a new upper bound for $f(n)$ which is similar to a lower bound of Balasubramanian and Srivastav. We also bound the ratio $f(n)/F(n)$ and use this result to obtain a constructive proof of the maximal order of $F(n)$ for $n \leq x$. Finally, we bound the number of numbers $\leq x$ which lie in the ranges of $F$ and $f$.

Autorzy

  • Noah Lebowitz-Lockard8330 Millman St.
    Philadelphia, PA 19118, U.S.A.
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek