JEDNOSTKA NAUKOWA KATEGORII A+

Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

Low-degree permutation rational functions over finite fields

Tom 202 / 2022

Zhiguo Ding, Michael E. Zieve Acta Arithmetica 202 (2022), 253-280 MSC: Primary 11T06; Secondary 11R32. DOI: 10.4064/aa210521-12-11 Opublikowany online: 4 March 2022

Streszczenie

We determine all degree-$4$ rational functions $f(X)\in \mathbb {F}_q(X)$ which permute $\mathbb {P}^1(\mathbb {F}_q)$, and answer two questions of Ferraguti and Micheli about the number of such functions and the number of equivalence classes of such functions up to composing with degree-one rational functions. We also determine all degree-$8$ rational functions $f(X)\in \mathbb {F}_q(X)$ which permute $\mathbb {P}^1(\mathbb {F}_q)$ in case $q$ is sufficiently large, and do the same for degree $32$ in case either $q$ is odd or $f(X)$ is a nonsquare. Further, for thousands of other positive integers $n$, for each sufficiently large $q$ we determine all degree-$n$ rational functions $f(X)\in \mathbb {F}_q(X)$ which permute $\mathbb {P}^1(\mathbb {F}_q)$ but which are not compositions of lower-degree rational functions in $\mathbb {F}_q(X)$. Some of these results are proved by using a new Galois-theoretic characterization of additive (linearized) polynomials among all rational functions, which is of independent interest.

Autorzy

  • Zhiguo DingHunan Institute of Traffic Engineering
    Hengyang, Hunan 421001, China
    e-mail
  • Michael E. ZieveDepartment of Mathematics
    University of Michigan
    Ann Arbor, MI 48109-1043, USA
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek