JEDNOSTKA NAUKOWA KATEGORII A+

Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

Small gaps between three almost primes and almost prime powers

Tom 203 / 2022

Daniel A. Goldston, Apoorva Panidapu, Jordan Schettler Acta Arithmetica 203 (2022), 1-18 MSC: Primary 11N36; Secondary 11N25. DOI: 10.4064/aa210325-27-11 Opublikowany online: 24 March 2022

Streszczenie

A positive integer is called an $E_j$-number if it is the product of $j$ distinct primes. We prove that there are infinitely many triples of $E_2$-numbers within a gap size of $32$ and infinitely many triples of $E_3$-numbers within a gap size of $15$. Assuming the Elliott–Halberstam conjecture for primes and $E_2$-numbers, we can improve these gaps to $12$ and $5$, respectively. We can obtain even smaller gaps for almost primes, almost prime powers, or integers having the same exponent pattern in the their prime factorizations. In particular, if $d(x)$ denotes the number of divisors of $x$, we prove that there are integers $a,b$ with $1\leq a \lt b \leq 9$ such that $d(x)=d(x+a)=d(x+b) = 192$ for infinitely many $x$. Assuming Elliott–Halberstam, we prove that there are integers $a,b$ with $1\leq a \lt b\leq 4$ such that $d(x)=d(x+a)=d(x+b)=24$ for infinitely many $x$.

Autorzy

  • Daniel A. GoldstonDepartment of Mathematics and Statistics
    San José State University
    1 Washington Sq.
    San Jose, CA 95192-0103, USA
    e-mail
  • Apoorva PanidapuDepartment of Mathematics and Statistics
    San José State University
    1 Washington Sq.
    San Jose, CA 95192-0103, USA
    e-mail
  • Jordan SchettlerDepartment of Mathematics and Statistics
    San José State University
    1 Washington Sq.
    San Jose, CA 95192-0103, USA
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek