JEDNOSTKA NAUKOWA KATEGORII A+

Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

Covering systems with large moduli associated with reducible shifts of integer polynomials

Tom 208 / 2023

Pradipto Banerjee Acta Arithmetica 208 (2023), 83-100 MSC: Primary 11R09; Secondary 11C08, 11B75. DOI: 10.4064/aa220518-18-3 Opublikowany online: 17 April 2023

Streszczenie

A variation of Turán’s polynomial conjecture is studied. Various connections between specific covering systems of congruences and reducible shifts of integer polynomials are established. These results are inspired by related work of A. Schinzel. As applications, it is shown that given an integer polynomial $f(x)$ with ${\rm deg}\,f \gt 0$, there is an integer $\lambda $ satisfying $\lvert \lambda \rvert \le 4\sqrt{{\rm deg}\,f}$ such that $x^{n}+f(x)+\lambda $ is irreducible over the rationals for infinitely many integers $n\ge 1$. Furthermore, if ${\rm deg}\,f \le 100$, then a desired $\lambda $ satisfying $\lvert \lambda \rvert \le 3$ exists.

Autorzy

  • Pradipto BanerjeeIndian Institute of Technology Hyderabad
    Kandi, Sangareddy
    Telangana 502285, India
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek