Quaternary quadratic forms with prime discriminant
Tom 209 / 2023
Streszczenie
Let $Q$ be a positive-definite quaternary quadratic form with prime discriminant. We give an explicit lower bound on the number of representations of a positive integer $n$ by $Q$. This problem is connected with deriving an upper bound on the Petersson norm $\langle C, C \rangle $ of the cuspidal part of the theta series of $Q$. We derive an upper bound on $\langle C, C \rangle $ that depends on the smallest positive integer not represented by the dual form $Q^{*}$. In addition, we give a non-trivial upper bound on the sum of the integers $n$ excepted by $Q$.