Lower bounds for Rankin–Selberg $L$-functions on the edge of the critical strip
Tom 211 / 2023
                    
                    
                        Acta Arithmetica 211 (2023), 161-171                    
                                        
                        MSC: Primary 11M26; Secondary 11F66.                    
                                        
                        DOI: 10.4064/aa221111-14-7                    
                                            
                            Opublikowany online: 12 October 2023                        
                                    
                                                Streszczenie
Let $F$ be a number field, and let $\pi _1$ and $\pi _2$ be distinct unitary cuspidal automorphic representations of ${\rm GL}_{n_1}(\mathbb {A}_F)$ and ${\rm GL}_{n_2}(\mathbb {A}_F)$ respectively. We derive new lower bounds for the Rankin–Selberg $L$-function $L(s, \pi _1 \times \widetilde {\pi }_2)$ along the edge $\Re s = 1$ of the critical strip in the $t$-aspect. The corresponding zero-free region for $L(s, \pi _1 \times \widetilde {\pi }_2)$ is also determined.
 
             
                                                             
                                                             
                                                             
                                                             
                                                             
                                                             
                                                         
                                                            