JEDNOSTKA NAUKOWA KATEGORII A+

Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

Rigidity in elliptic curve local-global principles

Tom 211 / 2023

Jacob Mayle Acta Arithmetica 211 (2023), 265-288 MSC: Primary 11G05; Secondary 11F80. DOI: 10.4064/aa230101-29-6 Opublikowany online: 18 September 2023

Streszczenie

We study the rigidity of the local conditions in two well-known local-global principles for elliptic curves over number fields. In particular, we consider a local-global principle for torsion due to Serre and Katz, and one for isogenies due to Sutherland. For each of these local-global principles, we prove that if an elliptic curve $E$ over a number field $K$ fails to satisfy the local condition for at least one prime ideal of $K$ of good reduction, then $E$ can satisfy the local condition at no more than 75% of prime ideals. We also give, for (conjecturally) all elliptic curves over the rationals without complex multiplication, the densities of primes that satisfy the local conditions mentioned above.

Autorzy

  • Jacob MayleDepartment of Mathematics
    Wake Forest University
    Winston-Salem, NC 27104, USA
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek