JEDNOSTKA NAUKOWA KATEGORII A+

Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

Effective convergence of coranks of random Rédei matrices

Tom 212 / 2024

Peter Koymans, Carlo Pagano Acta Arithmetica 212 (2024), 337-358 MSC: Primary 11R29; Secondary 37A25, 60J10 DOI: 10.4064/aa230318-4-1 Opublikowany online: 4 March 2024

Streszczenie

We give effective estimates for the $l^1$-distance between the corank distribution of $r \times r$ Rédei matrices and the measure predicted by the Cohen–Lenstra heuristics. To this end we pinpoint a class of stochastic processes, which we call $c$-transitioning. These stochastic processes are well approximated by Markov processes, and we give an effective ergodic theorem for such processes. With this tool we make effective a theorem of Gerth (1984) that initiated the study of the Cohen–Lenstra heuristics for $p = 2$.

Gerth’s work triggered a series of developments that has recently culminated in the breakthrough of Smith (2017). The present work will be used in upcoming work of the authors on further applications of Smith’s ideas to the arithmetic of quadratic fields. To this end we extend our main result to several other families of matrix spaces that occur in the study of integral points of the equation $x^2 - dy^2 = l$ as $d$ varies.

Autorzy

  • Peter KoymansInstitute for Theoretical Studies
    ETH Zürich
    8006 Zürich, Switzerland
    e-mail
  • Carlo PaganoConcordia University
    Montreal, Quebec H3G 1M8, Canada
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek