JEDNOSTKA NAUKOWA KATEGORII A+

Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

An infinite family of internal congruences modulo powers of 2 for partitions into odd parts with designated summands

Tom 215 / 2024

Shane Chern, James A. Sellers Acta Arithmetica 215 (2024), 43-64 MSC: Primary 11P83; Secondary 05A17 DOI: 10.4064/aa230808-11-3 Opublikowany online: 31 May 2024

Streszczenie

In 2002, Andrews, Lewis, and Lovejoy introduced the combinatorial objects which they called partitions with designated summands. These are built by taking unrestricted integer partitions and designating exactly one part of each size. In the same work, Andrews, Lewis, and Lovejoy also studied such partitions wherein all parts must be odd, and they denoted the number of such partitions of size $n$ by ${\rm PDO}(n)$. Since then, numerous authors have proven a variety of divisibility properties satisfied by ${\rm PDO}(n)$. Recently, the second author proved the following internal congruences satisfied by ${\rm PDO}(n)$: For all $n\geq 0$, $${\rm PDO}(4n) \equiv {\rm PDO}(n) \pmod {4},$$ $${\rm PDO}(16n) \equiv {\rm PDO}(4n) \pmod {8}.$$ In the present work, we significantly extend these results by proving the following new infinite family of congruences: For all $k\geq 0$ and all $n\geq 0$, $${\rm PDO}(2^{2k+3}n) \equiv {\rm PDO}(2^{2k+1}n) \pmod {2^{2k+3}}.$$ To do so, we utilize several classical tools, including generating function dissections via the unitizing operator of degree 2, various modular relations and recurrences involving a Hauptmodul on the classical modular curve $X_0(6)$, and an induction argument which provides the final step in proving the necessary divisibilities. It is notable that the construction of each $2$-dissection slice of our generating function bears an entirely different nature to those studied in the past literature.

Autorzy

  • Shane ChernDepartment of Mathematics and Statistics
    Dalhousie University
    Halifax, NS, B3H 4R2, Canada
    e-mail
  • James A. SellersDepartment of Mathematics and Statistics
    University of Minnesota Duluth
    Duluth, MN 55812, USA
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek