JEDNOSTKA NAUKOWA KATEGORII A+

Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

Traces of Poincaré series at square discriminants and Fourier coefficients of mock modular forms

Tom 216 / 2024

Vaibhav Kalia, Balesh Kumar Acta Arithmetica 216 (2024), 1-18 MSC: Primary 11F12; Secondary 11F30, 11F37 DOI: 10.4064/aa231015-1-3 Opublikowany online: 26 July 2024

Streszczenie

Jeon, Kang and Kim (2013) proved that the Fourier coefficients $b(d,D)$ of mock modular form $\mathscr G_{d}$ of weight $3/2$ for $\Gamma_{0}(4)$ can be interpreted in terms of the Hurwitz–Kronecker class number and modified traces of cycle integrals of a sesqui-harmonic Maass form $\hat{\mathbb J}_{1}$ of weight $0$ for ${\rm SL}_{2}(\mathbb Z)$. The function $\hat{\mathbb J}_{1}$ is related to Klein’s $j$-function via its image under hyperbolic Laplacian. Their result applies to the coefficients $b(d,D)$ for which $dD$ is not a square. In this paper, we define modified traces for square discriminants and express the coefficients $b(d, D)$ with $dD$ a square in terms of the Hurwitz–Kronecker class number and modified traces of cycle integrals of $\hat{\mathbb J}_{1}$. Furthermore, we prove that the coefficient $b(d, D)$ is the regularized inner product of weakly holomorphic modular forms of weight $1/2$ for $\Gamma_{0}(4)$. As an application, we express the modified trace of $\hat{\mathbb J}_{1}$ at a square discriminant in terms of the central critical value of the (non-existent) $L$-series of harmonic Maass form of ‘dual’ weight. The summands that emerge in the expression of the central critical value are linked to a classical expression of the Rademacher–Petersson type formula.

Autorzy

  • Vaibhav KaliaDepartment of Mathematics
    Indian Institute of Technology Ropar
    Rupnagar, 140001, Punjab, India
    e-mail
  • Balesh KumarDepartment of Mathematics
    Indian Institute of Technology Ropar
    Rupnagar, 140001, Punjab, India
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek