JEDNOSTKA NAUKOWA KATEGORII A+

Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

The least common multiple of polynomial values over function fields

Tom 217 / 2025

Alexei Entin, Sean Landsberg Acta Arithmetica 217 (2025), 159-187 MSC: Primary 11N32; Secondary 11T06, 11T55, 12E10 DOI: 10.4064/aa231205-20-8 Opublikowany online: 7 January 2025

Streszczenie

Cilleruelo conjectured that for an irreducible polynomial $f \in \mathbb Z[X]$ of degree $d \geq 2$ one has $$ \log \mathrm{lcm} (f(1),\ldots , f(N))\sim (d-1)N\log N $$ as $N \to \infty $. He proved it in the case $d=2$ but it remains open for every polynomial with $d \gt 2$.

We investigate the function field analogue of the problem by considering polynomials over the ring $\mathbb F_q[T]$. We state an analogue of Cilleruelo’s conjecture in this setting: denoting$$L_f(n) := \mathrm{lcm} (f(Q) : Q \in \mathbb F_q[T]\ \mbox{monic},\, \deg Q = n)$$ we conjecture that \[ \deg L_f(n) \sim c_f (d-1) nq^n,\quad n \to \infty \tag{1} \] ($c_f$ is an explicit constant depending only on $f$, typically $c_f=1$). We give both upper and lower bounds for $L_f(n)$ and show that the asymptotic (1) holds for a class of “special” polynomials, initially considered by Leumi in this context, which includes all quadratic polynomials and many other examples as well. We fully classify these special polynomials. We also show that $\deg L_f(n) \sim \deg \mathrm{rad}\,L_f(n)$ (in other words, the corresponding LCM is close to being squarefree), which is not known over $\mathbb Z $.

Autorzy

  • Alexei EntinRaymond and Beverly Sackler School of Mathematical Sciences
    Tel Aviv University
    Tel Aviv 69978, Israel
    e-mail
  • Sean LandsbergRaymond and Beverly Sackler School of Mathematical Sciences
    Tel Aviv University
    Tel Aviv 69978, Israel
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek