JEDNOSTKA NAUKOWA KATEGORII A+

Strong approximation and Hasse principle for integral quadratic forms over affine curves

Yong Hu, Jing Liu, Yisheng Tian Acta Arithmetica MSC: Primary 11E04; Secondary 11E25, 11E57, 20G35 DOI: 10.4064/aa240111-9-7 Opublikowany online: 20 November 2024

Streszczenie

We extend some parts of the representation theory for integral quadratic forms over the ring of integers of a number field to the case over the coordinate ring $k[C]$ of an affine curve $C$ over a general base field $k$. By using genus theory, we link the strong approximation property of certain spin groups to the Hasse principle for representations of integral quadratic forms over $k[C]$ and derive several applications. In particular, we give an example where a spin group does not satisfy strong approximation.

Autorzy

  • Yong HuDepartment of Mathematics
    Southern University of Science and Technology
    Shenzhen 518055, China
    e-mail
  • Jing LiuDepartment of Mathematics
    Southern University of Science and Technology
    Shenzhen 518055, China
    e-mail
  • Yisheng TianInstitute for Advanced Study
    in Mathematics
    Harbin Institute of Technology
    Harbin 150001, China
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek