JEDNOSTKA NAUKOWA KATEGORII A+

Restricted partition functions and the $r$-log-concavity of quasi-polynomial-like functions

Krystian Gajdzica Acta Arithmetica MSC: Primary 11P82; Secondary 11P84, 05A17 DOI: 10.4064/aa231101-30-6 Opublikowany online: 27 December 2024

Streszczenie

Let $\mathcal A=(a_i)_{i=1}^\infty $ be a non-decreasing sequence of positive integers and let $k$ be a fixed positive integer. For an arbitrary integer $n$, the restricted partition function $p_\mathcal A(n,k)$ enumerates all the partitions of $n$ whose parts belong to the multiset $\{a_1,\ldots ,a_k\}$. In this paper we investigate some generalizations of the log-concavity of $p_{\mathcal A}(n,k)$. We deal with both some basic extensions like, for instance, the strong log-concavity and a more intriguing challenge that is the $r$-log-concavity of both quasi-polynomial-like functions in general, and the restricted partition function in particular. For each of the problems, we present an efficient solution.

Autorzy

  • Krystian GajdzicaTheoretical Computer Science Department
    Jagiellonian University
    30-348 Kraków, Poland
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek