JEDNOSTKA NAUKOWA KATEGORII A+

The Erdős distinct subset sums problem in a modular setting

Stijn Cambie, Jun Gao, Younjin Kim, Hong Liu Acta Arithmetica MSC: Primary 11B13; Secondary 11B50, 11B75 DOI: 10.4064/aa231107-13-9 Opublikowany online: 6 February 2025

Streszczenie

We prove the following variant of the Erdős distinct subset sums problem. Given $t \ge 0$ and sufficiently large $n$, every $n$-element set $A$ whose subset sums are distinct modulo $N=2^n+t$ satisfies $$\max A \ge \biggl(\frac{1}{3}-o(1)\bigg)N. $$ Furthermore, we provide examples showing that the constant $1/3$ is best possible. For small values of $t$, we characterise the structure of all sumset-distinct sets modulo $N=2^n+t$ of cardinality $n$.

Autorzy

  • Stijn CambieExtremal Combinatorics and
    Probability Group (ECOPRO)
    Institute for Basic Science (IBS)
    Daejeon, South Korea
    and
    Department of Computer Science
    KU Leuven Campus Kulak-Kortrijk
    8500 Kortrijk, Belgium
    e-mail
  • Jun GaoExtremal Combinatorics and
    Probability Group (ECOPRO)
    Institute for Basic Science (IBS)
    Daejeon, South Korea
    e-mail
  • Younjin KimDepartment of Mathematics
    POSTECH
    Pohang, South Korea
    e-mail
  • Hong LiuExtremal Combinatorics and Probability Group (ECOPRO)
    Institute for Basic Science (IBS)
    Daejeon, South Korea
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek