JEDNOSTKA NAUKOWA KATEGORII A+

Two variants of a theorem of Schinzel and Wójcik on multiplicative orders

Paul Pollack Acta Arithmetica MSC: Primary 11R44; Secondary 11A07, 11R04 DOI: 10.4064/aa240412-9-12 Opublikowany online: 11 February 2025

Streszczenie

Schinzel and Wójcik have shown that if $\alpha ,\beta \in \mathbb Q^{\times} \setminus \{\pm 1\}$, then there are infinitely many primes $p$ where $v_p(\alpha )=v_p(\beta )=0$ and where $\alpha ,\beta $ share the same multiplicative order modulo $p$. We present two variants of their result. First, we give a short and simple proof of the analogous statement where $\mathbb Q$ is replaced by any global function field $K$. Second, we show that a similar conclusion holds in the number field case provided one can find a suitable ‘auxiliary prime’. Given $K$, $\alpha $, and $\beta $, it appears simple in practice to find such a prime. As an application, we prove there are infinitely many primes $p$ with the same rank of appearance in the sequences of Pell and Fibonacci numbers.

Autorzy

  • Paul PollackDepartment of Mathematics
    University of Georgia
    Athens, GA 30601, USA
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek