JEDNOSTKA NAUKOWA KATEGORII A+

Flatness testing over singular bases

Tom 107 / 2013

Janusz Adamus, Hadi Seyedinejad Annales Polonici Mathematici 107 (2013), 87-96 MSC: Primary 13C11, 32B99; Secondary 13H99, 13B10, 13P99, 32S45. DOI: 10.4064/ap107-1-6

Streszczenie

We show that non-flatness of a morphism $\varphi:X\to Y$ of complex-analytic spaces with a locally irreducible target of dimension $n$ manifests in the existence of vertical components in the $n$-fold fibred power of the pull-back of $\varphi$ to the desingularization of $Y$. An algebraic analogue follows: Let $R$ be a locally (analytically) irreducible finite type $\mathbb C$-algebra and an integral domain of Krull dimension $n$, and let $S$ be a regular $n$-dimensional algebra of finite type over $R$ (but not necessarily a finite $R$-module), such that $\mathop{\rm Spec} S\to\mathop{\rm Spec} R$ is dominant. Then a finite type $R$-algebra $A$ is $R$-flat if and only if $(A^{\otimes^n_R})\otimes_RS$ is a torsion-free $R$-module.

Autorzy

  • Janusz AdamusDepartment of Mathematics
    The University of Western Ontario
    London, Ontario, Canada N6A 5B7
    and
    Institute of Mathematics
    Faculty of Mathematics
    and Computer Science
    Jagiellonian University
    Łojasiewicza 6
    30-348 Kraków, Poland
    e-mail
  • Hadi SeyedinejadDepartment of Mathematics
    The University of Western Ontario
    London, Ontario, Canada N6A 5B7
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek