Triangularization properties of power linear maps and the Structural Conjecture
Tom 112 / 2014
Annales Polonici Mathematici 112 (2014), 247-266
MSC: Primary 14R10; Secondary 14R15.
DOI: 10.4064/ap112-3-4
Streszczenie
We discuss several additional properties a power linear Keller map may have. The Structural Conjecture of Drużkowski (1983) asserts that certain two such properties are equivalent, but we show that one of them is stronger than the other. We even show that the property of linear triangularizability is strictly in between. Furthermore, we give some positive results for small dimensions and small Jacobian ranks.