JEDNOSTKA NAUKOWA KATEGORII A+

Stein open subsets with analytic complements in compact complex spaces

Tom 113 / 2015

Jing Zhang Annales Polonici Mathematici 113 (2015), 43-60 MSC: Primary 32E10; Secondary 14E05. DOI: 10.4064/ap113-1-2

Streszczenie

Let $Y$ be an open subset of a reduced compact complex space $X$ such that $X-Y$ is the support of an effective divisor $D$. If $X$ is a surface and $D$ is an effective Weil divisor, we give sufficient conditions so that $Y$ is Stein. If $X$ is of pure dimension $d\geq 1$ and $X-Y$ is the support of an effective Cartier divisor $D$, we show that $Y$ is Stein if $Y$ contains no compact curves, $H^i(Y, {\mathcal {O}}_Y)=0$ for all $i>0$, and for every point $x_0\in X-Y$ there is an $n\in \mathbb {N}$ such that $\varPhi _{|nD|}^{-1}(\varPhi _{|nD|}(x_0))\cap Y$ is empty or has dimension 0, where $\varPhi _{|nD|} $ is the map from $X$ to the projective space defined by a basis of $H^0(X, {\mathcal {O}}_X(nD))$.

Autorzy

  • Jing Zhang1 University Parkway
    Building F, Office F2403
    Division of Science
    Governors State University
    University Park, IL 60484, U.S.A.
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek