On delta $m$-subharmonic functions
Tom 118 / 2016
Annales Polonici Mathematici 118 (2016), 25-49
MSC: Primary 32U05; Secondary 06F30.
DOI: 10.4064/ap3959-9-2916
Opublikowany online: 27 October 2016
Streszczenie
Let $p \gt 0$, and let $\mathcal {E}_{p,m}$ be the cone of negative $m$-subharmonic functions with finite $m$-pluricomplex $p$-energy. We will define a quasi-norm on the vector space $\delta \mathcal {E}_{p,m}=\mathcal {E}_{p,m}-\mathcal {E}_{p,m}$ and prove that this vector space with this quasi-norm is a quasi-Banach space. Furthermore, we characterize its topological dual.