JEDNOSTKA NAUKOWA KATEGORII A+

Hyperbolicity and Vitali properties of unbounded domains in Banach spaces

Tom 119 / 2017

Nguyen Quang Dieu, Nguyen Van Khiem, Le Thanh Hung Annales Polonici Mathematici 119 (2017), 255-273 MSC: Primary 32F45, 32Q45; Secondary 32H02, 32A07, 32K05. DOI: 10.4064/ap4146-8-2017 Opublikowany online: 26 September 2017

Streszczenie

Let $\varOmega $ be an unbounded domain in a Banach space. In this work, we wish to impose local conditions on the boundary points of $\varOmega $ (including the point at infinity) that guarantee hyperbolicity and complete hyperbolicity of $\varOmega .$ We also search for local boundary conditions so that Vitali properties hold true for $\varOmega .$ These properties might be considered as analogues of the usual taut property in the finite-dimensional case.

Autorzy

  • Nguyen Quang DieuDepartment of Mathematics
    Hanoi National University of Education
    136 Xuan Thuy Street
    Hanoi, Vietnam
    e-mail
  • Nguyen Van KhiemDepartment of Mathematics
    Hanoi National University of Education
    136 Xuan Thuy Street
    Hanoi, Vietnam
    e-mail
  • Le Thanh HungVinh Phuc College of Education
    Trung Trac, Vinh Phuc, Vietnam
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek