JEDNOSTKA NAUKOWA KATEGORII A+

Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

Optimal large-time behavior of the full 3D compressible MHD system

Tom 129 / 2022

Han Wang, Yinghui Zhang Annales Polonici Mathematici 129 (2022), 77-96 MSC: Primary 35B40; Secondary 35Q35. DOI: 10.4064/ap210925-7-3 Opublikowany online: 20 June 2022

Streszczenie

We investigate optimal large-time behavior for higher-order spatial derivatives of strong solutions to the 3D full compressible MHD system. More precisely, we employ low-frequency and high-frequency decomposition and delicate energy estimates to show that the third-order spatial derivatives of the density, velocity and absolute temperature converge to their corresponding equilibrium states at the $L^2$-rate $(1+t)^{-\frac {3}{4}(\frac {2}{p}-1)-\frac {3}{2}}$ with $1\leq p \lt \frac {6}{5}$, which is the same as that of the heat equation, and in particular improves the $L^2$-rate $(1+t)^{-\frac {3}{4}(\frac {2}{p}-1)-\frac {1}{2}}$ in [X. K. Pu et al., Z. Agnew. Math. Phys. 64 (2013), 519–538], and the $L^2$–rate $(1+t)^{-\frac {3}{4}(\frac {2}{p}-1)-1}$ in [J. C. Gao et al., Z. Agnew. Math. Phys. 67 (2016), 23].

Autorzy

  • Han WangSchool of Mathematics and Statistics
    Guangxi Normal University
    Guilin, Guangxi 541004, P.R. China
    e-mail
  • Yinghui ZhangSchool of Mathematics and Statistics
    Guangxi Normal University
    Guilin, Guangxi 541004, P.R. China
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek