JEDNOSTKA NAUKOWA KATEGORII A+

Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

Structure results for the integral set of a submanifold with respect to a non-integrable exterior differential system

Tom 131 / 2023

Silvano Delladio Annales Polonici Mathematici 131 (2023), 193-220 MSC: Primary 58A15; Secondary 58A10, 28A75, 58A30. DOI: 10.4064/ap230113-17-8 Opublikowany online: 17 November 2023

Streszczenie

Let $\mathcal {N}$ and $\mathcal {O}$ be, respectively, a $C^2$ manifold and an arbitrary family of $C^1$ differential forms on $\mathcal N $. Moreover, assume that $$\begin{aligned} &\llap{(\ast)}\ \text{For all $y\in \mathcal {N}$ and for all $M$-dimensional integral elements}\\ &\ \text {$\Sigma $ of $\mathcal {O}$ at $y$, there is $\omega \in \mathcal {O}$ such that $(d\omega )_y\vert _\Sigma \not =0$.} \end{aligned}$$ If $\mathcal {M}$ is any $M$-dimensional $C^1$ imbedded submanifold of $\mathcal {N}$, then we expect that condition $(*)$ prevents the existence of interior points in the integral subset of $\mathcal {M}$ with respect to $\mathcal {O}$, i.e., $$ \mathcal I (\mathcal {M},\mathcal {O}):=\bigcap _{\omega \in \mathcal {O}} \{\omega \vert _{\mathcal M} =0\}. $$ Actually, the structure of $\mathcal I (\mathcal {M},\mathcal {O})$ can be described much more precisely by invoking the notion of superdensity. Indeed, under the previous hypotheses, the following structure result holds: There are no $(M+1)$-density points of $\mathcal I (\mathcal {M},\mathcal {O})$ relative to $\mathcal {M}$.

If we now consider $\mathcal {M}$ in the smaller class of $C^2$ imbedded submanifolds of $\mathcal N $, then it becomes natural to expect a further “slimming” of $\mathcal I (\mathcal {M},\mathcal {O})$. Indeed, we have the following second structure result: If $\mathcal {O}$ is countable, then $\mathcal I (\mathcal {M},\mathcal {O})$ is an $(M-1)$-dimensional $C^1$ rectifiable subset of $\mathcal {M}$. These results are immediate corollaries of two general structure theorems, which are the main goal of this paper. Applications in the context of non-involutive distributions and in the context of the Pfaff problem are provided.

Autorzy

  • Silvano DelladioDepartment of Mathematics
    University of Trento
    38123 Trento, Italy
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek