JEDNOSTKA NAUKOWA KATEGORII A+

Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

Meromorphic solutions of the differential equation $(f^{n})^{(k)}(g^{n})^{(k)}=1$ and its applications

Tom 131 / 2023

Xiao-Min Li, Amina Bibi, Hong-Xun Yi Annales Polonici Mathematici 131 (2023), 235-262 MSC: Primary 30D35; Secondary 30D30 DOI: 10.4064/ap220504-27-9 Opublikowany online: 30 November 2023

Streszczenie

In 1997, C. C. Yang and X. H. Hua [Ann. Acad. Sci. Fenn. Math. 22 (1997), 395–406] proved that if $f$ and $g$ are two non-constant meromorphic functions such that $f^nf’g^n g’= 1,$ where $n$ is a positive integer satisfying $n\geq 6,$ then $f$ and $g$ are transcendental entire functions such that $g(z) = c_1e^{cz}$ and $f(z) = c_2 e^{-cz},$ where $c_1$, $c_2$ and $c$ are three complex constants such that $(c_1 c_ 2 )^{ n+1}c^2 = -1.$ By using Zalcman’s Lemma, we prove that if $f$ and $g$ are two non-constant meromorphic functions such that $(f^n)^{(k)}(g^n)^{(k)}=1,$ where $n$ and $k$ are positive integers satisfying $n \gt 2k,$ then $f(z)=c_1e^{cz}$ and $g(z)=c_2e^{-cz},$ where $c_1,$ $c_2$ and $c$ are three complex constants satisfying $(-1)^k(c_1c_2)^n(nc)^{2k}=1.$ Applying this result, we completely resolve a uniqueness question of meromorphic functions involving certain non-linear differential polynomials. As applications, we also improve a result from Yang and Hua’s cited paper and study a periodicity question of non-constant meromorphic functions involving certain non-linear differential polynomials, where the periodicity question is related to a conjecture of Yang, reported by Q. Wang and P. C. Hu [Acta Math. Sci. 38 (2018), 209–214], and the differential-difference versions of Yang’s conjecture proposed by X. L. Liu and R. Korhonen [Bull. Austral. Math. Soc. 101 (2020), 453–465]. We also discuss a gap in the proof of a result of S. S. Bhoosnurmath and R. S. Dyavanal [Comput. Math. Appl. 53 (2007), 1191–1205].

Autorzy

  • Xiao-Min LiSchool of Mathematical Sciences
    Ocean University of China
    Qingdao, Shandong 266100, P.R. China
    e-mail
  • Amina BibiSchool of Mathematical Sciences
    Ocean University of China
    Qingdao, Shandong 266100, P.R. China
    e-mail
  • Hong-Xun YiDepartment of Mathematics
    Shandong University
    Jinan, Shandong 250199, P.R. China
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek