JEDNOSTKA NAUKOWA KATEGORII A+

Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

Quasianalytic solutions of differential equations at singular points

Tom 131 / 2023

Abdelhafed Elkhadiri Annales Polonici Mathematici 131 (2023), 221-233 MSC: Primary 26E10; Secondary 58C25, 46E25, 34M03, 34M25 DOI: 10.4064/ap230614-5-9 Opublikowany online: 11 December 2023

Streszczenie

We consider differential equations of the form $ F(x,y(x),y’(x)) =0$. Here $x$ denotes a real variable and $ x\mapsto y(x) $ a real $m$-vector function. Furthermore, $F$ is a $C^\infty $ $m$-vector function defined in a neighbourhood of the origin in $\mathbb R \times \mathbb R ^m\times \mathbb R ^m$ such that $ F(0,0,0)=0$. We also suppose that $F$ is in some Denjoy–Carleman quasianalytic class. If the equation $ F(x,y(x),y’(x)) =0$ has a formal solution $u(x)= (u_1(x),\ldots ,u_m(x))$, where each $ u_j(x) =\sum _{p=2}^\infty a_{j,p}x^p\in \mathbb R [[x]]$, $j=1,\ldots , m$, is a formal power series with real coefficients, we give a condition that guarantees that each $u_j(x)$ is the Taylor expansion of a function in the same Denjoy–Carleman quasianalytic class as $F$. By quasianalyticity, we obtain a solution of the differential equation $ F(x,y,y’)=0$ which is in the same Denjoy–Carleman quasianalytic class as $F$. Unfortunately, this condition is rather restrictive as regards the behaviour of the solutions in a neighbourhood of the origin in $\mathbb R $. It can be seen from simple examples that the condition cannot be relaxed.

Autorzy

  • Abdelhafed ElkhadiriDepartment of Mathematics
    Faculty of Sciences
    University Ibn Tofail
    Kenitra, Morocco
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek