On starlikeness of certain integral transforms
Tom 56 / 1992
Annales Polonici Mathematici 56 (1992), 227-232
DOI: 10.4064/ap-56-3-227-232
Streszczenie
Let A denote the class of normalized analytic functions in the unit disc U = {z: |z| < 1}. The author obtains fixed values of δ and ϱ (δ ≈ 0.308390864..., ϱ ≈ 0.0903572...) such that the integral transforms F and G defined by $F(z) = ∫_0^z (f(t)/t)dt$ and $G(z) = (2/z) ∫_0^z g(t)dt$ are starlike (univalent) in U, whenever f ∈ A and g ∈ A satisfy Ref'(z) > -δ and Re g'(z) > -ϱ respectively in U.