JEDNOSTKA NAUKOWA KATEGORII A+

The representation of smooth functions in terms of the fundamental solution of a linear parabolic equation

Tom 75 / 2000

Neil Watson Annales Polonici Mathematici 75 (2000), 281-287 DOI: 10.4064/ap-75-3-281-287

Streszczenie

Let L be a second order, linear, parabolic partial differential operator, with bounded Hölder continuous coefficients, defined on the closure of the strip $X = ℝ^{n} × ]0,a[$. We prove a representation theorem for an arbitrary $C^{2,1}$ function, in terms of the fundamental solution of the equation Lu=0. Such a theorem was proved in an earlier paper for a parabolic operator in divergence form with $C^{∞}$ coefficients, but here much weaker conditions suffice. Some consequences of the representation theorem, for the solutions of Lu=0, are also presented.

Autorzy

  • Neil Watson

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek