Concave domains with trivial biholomorphic invariants
Tom 79 / 2002
Annales Polonici Mathematici 79 (2002), 63-66
MSC: Primary 32H15.
DOI: 10.4064/ap79-1-5
Streszczenie
It is proved that if $F$ is a convex closed set in ${\mathbb C}^n$, $n\ge 2,$ containing at most one $(n-1)$-dimensional complex hyperplane, then the Kobayashi metric and the Lempert function of ${\mathbb C}^n\setminus F$ identically vanish.