JEDNOSTKA NAUKOWA KATEGORII A+

On a functional equation with derivative and symmetrization

Tom 89 / 2006

Adam Bobrowski, Ma/lgorzata Kubali/nska Annales Polonici Mathematici 89 (2006), 13-24 MSC: Primary 39B05; Secondary 60G35, 92D10, 47D03. DOI: 10.4064/ap89-1-2

Streszczenie

We study existence, uniqueness and form of solutions to the equation $\alpha g - \beta g' + \gamma g_{\rm e} = f $ where $\alpha, \beta, \gamma $ and $f$ are given, and $g_{\rm e}$ stands for the even part of a searched-for differentiable function $g$. This equation emerged naturally as a result of the analysis of the distribution of a certain random process modelling a population genetics phenomenon.

Autorzy

  • Adam BobrowskiInstitute of Mathematics
    Polish Academy of Sciences
    Katowice branch
    Bankowa 14
    40-007 Katowice, Poland
    and
    Department of Mathematics
    Faculty of Electrical Engineering
    and Computer Science
    Lublin University of Technology
    Nadbystrzycka 38A
    20-618 Lublin, Poland
    e-mail
  • Ma/lgorzata Kubali/nskaDepartment of Computer Sciences
    Faculty of Management
    and Fundamentals of Technology
    Lublin University of Technology
    Nadbystrzycka 38
    20-618 Lublin, Poland
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek