JEDNOSTKA NAUKOWA KATEGORII A+

On a globalization property

Tom 22 / 1993

Stefan Rolewicz Applicationes Mathematicae 22 (1993), 69-73 DOI: 10.4064/am-22-1-69-73

Streszczenie

Let (X,τ) be a topological space. Let Φ be a class of real-valued functions defined on X. A function ϕ ∈ Φ is called a local Φ-subgradient of a function f:X → ℝ at a point $x_0$ if there is a neighbourhood U of $x_0$ such that f(x) - f($x_0$) ≥ ϕ(x) - ϕ($x_0$) for all x ∈ U. A function ϕ ∈ Φ is called a global Φ-subgradient of f at $x_0$ if the inequality holds for all x ∈ X. The following properties of the class Φ are investigated: (a) when the existence of a local Φ-subgradient of a function f at each point implies the existence of a global Φ-subgradient of f at each point (globalization property), (b) when each local Φ-subgradient can be extended to a global Φ-subgradient (strong globalization property).

Autorzy

  • Stefan Rolewicz

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek