JEDNOSTKA NAUKOWA KATEGORII A+

Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

Stability of smooth extensions of Bernoulli shifts

Tom 44 / 2017

Zbigniew S. Kowalski Applicationes Mathematicae 44 (2017), 85-104 MSC: Primary 37 A05; Secondary 81Q05, 91G80. DOI: 10.4064/am2298-2-2017 Opublikowany online: 3 March 2017

Streszczenie

Let $ S_i,\,i=0,1$, be homeomorphisms of $I=[0,1]$ such that $S_i^{-1}(x)=(1-\epsilon _i)x+\epsilon _ig(x)$, $i=0,1$, for some reals $\epsilon _0 \lt 0$ and $\epsilon _1 \gt 0.$ Here $g$ is a $C^1(0,1)$ homeomorphism and $g(x) \lt x$ for $x\in (0,1).$ Let $(\varOmega ,\mathcal B,\mu _p,\sigma )$ be the one-sided Bernoulli shift where $\varOmega =\{0,1\}^{\mathbb {N}}$ and $\mu _p$ is the $(p,q)$ measure for some $p\in I.$ In the space $\varOmega \times I$ we define the skew product $S(\omega ,x)=(\sigma (\omega ),S_{\omega (0)}(x)) .$ For some class of distribution functions $F \in C^2(0,1)$ of probability measures and all $\epsilon _0 \lt 0$, $\epsilon _1 \gt 0 ,$ and $p\in ({\epsilon _1/(\epsilon _1-\epsilon _0)},1)$, we give sufficient conditions for existence of exactly one pair of homeomorphisms as above such that $\mu _p\times \mu _F$ is $S$-invariant. Here $\mu _F$ is the measure determined by $F.$ For example, as a consequence of the above, we show that if $S_0^{-1}(x)=1.307x-0.307x^2$ and $S_1^{-1}(x)=0.26x+0.74x^2 ,$ then for every $p\in [0.706781,{\sqrt {2}/2})$, $S$ possesses ergodic invariant measure $\mu _p\times \mu _{G_p}$ which is a kind of Sinai–Ruelle–Bowen measure. We apply the above results to the quantum harmonic oscillator and a binomial model for asset prices.

Autorzy

  • Zbigniew S. KowalskiFaculty of Pure and Applied Mathematics
    Wrocław University of Science and Technology
    50-370 Wrocław, Poland
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek