JEDNOSTKA NAUKOWA KATEGORII A+

Some stability problem for the Navier–Stokes equations in the periodic case

Tom 46 / 2019

W. M. Zajączkowski Applicationes Mathematicae 46 (2019), 155-173 MSC: 35Q30, 76D05, 76N10, 35B35, 76D03. DOI: 10.4064/am2309-8-2018 Opublikowany online: 23 April 2019

Streszczenie

The Navier–Stokes motions in a box with periodic boundary conditions are considered. First the existence of global regular two-dimensional solutions is proved. Since the external force does not decay in time, the solution has the same property. The necessary estimates and existence are proved step by step in time. Dissipation in the Navier–Stokes equations makes this approach possible. Assuming that the initial velocity and the external force are sufficiently close to the initial velocity and the external force of the two-dimensional problems we prove existence of global three-dimensional regular solutions which remain close to the two-dimensional solutions for all time.

Autorzy

  • W. M. ZajączkowskiInstitute of Mathematics
    Polish Academy of Sciences
    Śniadeckich 8
    00-656 Warszawa, Poland
    and
    Institute of Mathematics and Cryptology
    Cybernetics Faculty
    Military University of Technology
    Kaliskiego 2
    00-908 Warszawa, Poland
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek